Discontinuous Galerkin Methods for Convection-Dominated Problems
نویسندگان
چکیده
In this paper, we review the development of the Runge–Kutta discontinuous Galerkin (RKDG) methods for non-linear convection-dominated problems. These robust and accurate methods have made their way into the main stream of computational fluid dynamics and are quickly finding use in a wide variety of applications. They combine a special class of Runge–Kutta time discretizations, that allows the method to be non-linearly stable regardless of its accuracy, with a finite element space discretization by discontinuous approximations, that incorporates the ideas of numerical fluxes and slope limiters coined during the remarkable development of the high-resolution finite difference and finite volume schemes. The resulting RKDG methods are stable, high-order accurate, and highly parallelizable schemes that can easily handle complicated geometries and boundary conditions. We review the theoretical and algorithmic aspects of these methods and show several applications including nonlinear conservation laws, the compressible and incompressibleNavier–Stokes equations, andHamilton–Jacobilike equations.
منابع مشابه
Discontinuous Galerkin multiscale methods for convection dominated problems
We propose an extension of the discontinuous Galerkin multiscale method, presented in [11], to convection dominated problems with rough, heterogeneous, and highly varying coefficients. The properties of the multiscale method and the discontinuous Galerkin method allows us to better cope with multiscale features as well as boundary layers in the solution. In the proposed method the trail and tes...
متن کاملA Hybrid Mixed Discontinuous Galerkin Method for Convection-Diffusion Problems
We propose and analyse a new finite element method for convection diffusion problems based on the combination of a mixed method for the elliptic and a discontinuous Galerkin method for the hyperbolic part of the problem. The two methods are made compatible via hybridization and the combination of both is appropriate for the solution of intermediate convection-diffusion problems. By construction...
متن کاملSuperconvergence of Discontinuous Finite Element Solutions for Transient Convection-diffusion Problems
We present a study of the local discontinuous Galerkin method for transient convection-di usion problems in one dimension. We show that p degree piecewise polynomial discontinuous nite element solutions of convection-dominated problems are O( xp+2) superconvergent at Radau points. For di usion-dominated problems, the solution's derivative is O( xp+2) superconvergent at the roots of the derivati...
متن کاملA Mixed-Hybrid-Discontinuous Galerkin Finite Element Method for Convection-Diffusion Problems
We propose and analyse a new finite element method for convection diffusion problems based on the combination of a mixed method for the elliptic and a discontinuous Galerkin method for the hyperbolic part of the problem. The two methods are made compatible via hybridization and the combination of both is appropriate for the solution of intermediate convection-diffusion problems. By construction...
متن کاملWeighted Error Estimates of the Continuous Interior Penalty Method for Singularly Perturbed Problems
In this paper we analyze local properties of the Continuous Interior Penalty (CIP) Method for a model convection-dominated singularly perturbed convection-diffusion problem. We show weighted a priori error estimates, where the weight function exponentially decays outside the subdomain of interest. This result shows that locally, the CIP method is comparable to the Streamline Diffusion (SD) or t...
متن کامل